二分
本页面将简要介绍二分查找,由二分法衍生的三分法以及二分答案。
二分法
定义
二分查找(英语:binary search),也称折半搜索(英语:half-interval search)、对数搜索(英语:logarithmic search),是用来在一个有序数组中查找某一元素的算法。
过程
以在一个升序数组中查找一个数为例。
它每次考察数组当前部分的中间元素,如果中间元素刚好是要找的,就结束搜索过程;如果中间元素小于所查找的值,那么左侧的只会更小,不会有所查找的元素,只需到右侧查找;如果中间元素大于所查找的值同理,只需到左侧查找。
性质
时间复杂度
二分查找的最优时间复杂度为
二分查找的平均时间复杂度和最坏时间复杂度均为
空间复杂度
迭代版本的二分查找的空间复杂度为
递归(无尾调用消除)版本的二分查找的空间复杂度为
实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
Note
参考 编译优化 #位运算代替乘法,对于 n >> 1
比 n / 2
指令数更少。
最大值最小化
注意,这里的有序是广义的有序,如果一个数组中的左侧或者右侧都满足某一种条件,而另一侧都不满足这种条件,也可以看作是一种有序(如果把满足条件看做
要求满足某种条件的最大值的最小可能情况(最大值最小化),首先的想法是从小到大枚举这个作为答案的「最大值」,然后去判断是否合法。若答案单调,就可以使用二分搜索法来更快地找到答案。因此,要想使用二分搜索法来解这种「最大值最小化」的题目,需要满足以下三个条件:
- 答案在一个固定区间内;
- 可能查找一个符合条件的值不是很容易,但是要求能比较容易地判断某个值是否是符合条件的;
- 可行解对于区间满足一定的单调性。换言之,如果
是符合条件的,那么有 或者 也符合条件。(这样下来就满足了上面提到的单调性)
当然,最小值最大化是同理的。
STL 的二分查找
C++ 标准库中实现了查找首个不小于给定值的元素的函数 std::lower_bound
和查找首个大于给定值的元素的函数 std::upper_bound
,二者均定义于头文件 <algorithm>
中。
二者均采用二分实现,所以调用前必须保证元素有序。
bsearch
bsearch 函数为 C 标准库实现的二分查找,定义在 <stdlib.h>
中。在 C++ 标准库里,该函数定义在 <cstdlib>
中。qsort 和 bsearch 是 C 语言中唯二的两个算法类函数。
bsearch 函数相比 qsort(排序相关 STL)的四个参数,在最左边增加了参数「待查元素的地址」。之所以按照地址的形式传入,是为了方便直接套用与 qsort 相同的比较函数,从而实现排序后的立即查找。因此这个参数不能直接传入具体值,而是要先将待查值用一个变量存储,再传入该变量地址。
于是 bsearch 函数总共有五个参数:待查元素的地址、数组名、元素个数、元素大小、比较规则。比较规则仍然通过指定比较函数实现,详见 排序相关 STL。
bsearch 函数的返回值是查找到的元素的地址,该地址为 void 类型。
注意:bsearch 与上文的 lower_bound 和 upper_bound 有两点不同:
- 当符合条件的元素有重复多个的时候,会返回执行二分查找时第一个符合条件的元素,从而这个元素可能位于重复多个元素的中间部分。
- 当查找不到相应的元素时,会返回 NULL。
用 lower_bound 可以实现与 bsearch 完全相同的功能,所以可以使用 bsearch 通过的题目,直接改写成 lower_bound 同样可以实现。但是鉴于上述不同之处的第二点,例如,在序列 1、2、4、5、6 中查找 3,bsearch 实现 lower_bound 的功能会变得困难。
利用 bsearch 实现 lower_bound 的功能比较困难,是否一定就不能实现?答案是否定的,存在比较 tricky 的技巧。借助编译器处理比较函数的特性:总是将第一个参数指向待查元素,将第二个参数指向待查数组中的元素,也可以用 bsearch 实现 lower_bound 和 upper_bound,如下文示例。只是,这要求待查数组必须是全局数组,从而可以直接传入首地址。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
因为现在的 OI 选手很少写纯 C,并且此方法作用有限,所以不是重点。对于新手而言,建议老老实实地使用 C++ 中的 lower_bound 和 upper_bound 函数。
二分答案
解题的时候往往会考虑枚举答案然后检验枚举的值是否正确。若满足单调性,则满足使用二分法的条件。把这里的枚举换成二分,就变成了「二分答案」。
Luogu P1873 砍树
伐木工人米尔科需要砍倒
米尔科的伐木机工作过程如下:米尔科设置一个高度参数
例如,如果一行树的高度分别为
米尔科非常关注生态保护,所以他不会砍掉过多的木材。这正是他尽可能高地设定伐木机锯片的原因。你的任务是帮助米尔科找到伐木机锯片的最大的整数高度
解题思路
我们可以在
参考代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
|
看完了上面的代码,你肯定会有两个疑问:
为何搜索区间是左闭右开的?
因为搜到最后,会这样(以合法的最大值为例):
然后会
合法的最小值恰恰相反。
为何返回左边值?
同上。
三分法
引入
如果需要求出单峰函数的极值点,通常使用二分法衍生出的三分法求单峰函数的极值点。
为什么不通过求导函数的零点来求极值点?
客观上,求出导数后,通过二分法求出导数的零点(由于函数是单峰函数,其导数在同一范围内的零点是唯一的)得到单峰函数的极值点是可行的。
但首先,对于一些函数,求导的过程和结果比较复杂。
其次,某些题中需要求极值点的单峰函数并非一个单独的函数,而是多个函数进行特殊运算得到的函数(如求多个单调性不完全相同的一次函数的最小值的最大值)。此时函数的导函数可能是分段函数,且在函数某些点上可能不可导。
注意
只要函数是单峰函数,三分法既可以求出其最大值,也可以求出其最小值。为行文方便,除特殊说明外,下文中均以求单峰函数的最小值为例。
三分法与二分法的基本思想类似,但每次操作需在当前区间
注意
在计算
三分法每次操作会舍去两侧区间中的其中一个。为减少三分法的操作次数,应使两侧区间尽可能大。因此,每一次操作时的
实现
伪代码
C++
1 2 3 4 5 6 7 8 9 |
|
例题
洛谷 P3382 -【模板】三分法
给定一个
解题思路
本题要求求
参考代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
习题
分数规划
参见:分数规划
分数规划通常描述为下列问题:每个物品有两个属性
经典的例子有最优比率环、最优比率生成树等等。
分数规划可以用二分法来解决。
本页面最近更新:2024/12/11 21:43:19,更新历史
发现错误?想一起完善? 在 GitHub 上编辑此页!
本页面贡献者:H-J-Granger, NachtgeistW, billchenchina, CBW2007, ChineseHamberger, ChungZH, countercurrent-time, Enter-tainer, flylai, gavinliu266, Great-designer, HanwGeek, Henry-ZHR, HeRaNO, i-yyi, iamtwz, inclyc, Ir1d, ksyx, LeiJinpeng, leoleoasd, Marcythm, Selflocking, shawlleyw, shuzhouliu, sshwy, StudyingFather, SukkaW, Tiphereth-A, TNO-C137, Xeonacid, yusancky
本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用